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Variability in oral reading fluency (ORF), an indicator of foundational reading skills, has been linked to
characteristics of texts. Such text-based variability in ORF has been traditionally attributed to text com-
plexity, but substantial text-based variability has still been observed after accounting for text complex-
ity. We consider that oral reading requires pronouncing the text aloud, which makes it subject to the
same articulatory and prosodic constraints as other types of speech productions. Thus, texts with similar
levels of complexity may still differ in expected durations when read aloud because of the texts’ seg-
mental and prosodic structure, leading to differences in reading rate. We propose that these production-
related effects are also important sources of text-based ORF variability. Data from upper elementary
school students in the United States reading a large variety of passages from a popular fiction book
showed that a composite measure of production-related effects (i.e., reading rate estimates derived from
a text-to-speech synthesis system) explained a substantial amount of text-based ORF variability.
Follow-up exploratory analyses indicated that these production-related effects are robust. Because text
complexity metrics consist of features that also tap into production constraints, our results motivate an
updated interpretation of text complexity effects on ORF and highlight the importance of accounting for
production-related effects on ORF, which remain to be acknowledged in the ORF literature as potential
sources of text-based variability.

Educational Impact and Implications Statement
Although the achievement of oral reading fluency (ORF) is a milestone in reading development on
its own, it is also a popular indicator of other critical reading skills, such as reading comprehension.
ORF is measured by having students read some text aloud for some time, and the average number
of words they correctly read in a minute is calculated. One well-known complication of this measure
is that the measure partly depends on the properties of the text being read. More complex texts are
expected to take longer to read, so text complexity metrics are often used when selecting passages
to measure ORF. In this article, we show that the relationship between text complexity and ORF is
not straightforward because some properties of texts could make them both more complex and
slower to utter, but other properties could increase the complexity but make them faster to utter;
thus, the oral and the reading parts of “oral reading” both need to be modeled to successfully
explain the effects of text properties on ORF.

Keywords: grade school, oral reading fluency, speech production, text complexity, text effects

Successful reading requires the mastery of foundational phono-
logical and orthographic skills. A standard proxy of these skills in
children is oral reading fluency (ORF), which is measured as
words correct per minute (WCPM) to account for both speed and
accuracy in reading (Fuchs et al., 2001). Reading both swiftly and

accurately reflects a mastery of decoding skills, which indicates
the successful mapping of phonological codes to orthographic
codes. In turn, ORF has been shown to strongly relate to reading
comprehension because the mastery of these skills shifts the cogni-
tive load during reading from decoding processes to higher-level
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semantic and discourse integration (Fuchs et al., 2001, 1988; Kim
et al., 2010, 2011; Kim & Wagner, 2015; Pikulski & Chard, 2005;
Torgesen et al., 2001).
Because ORF is considered a measure of children’s founda-

tional reading skills, it is important to understand systematic sour-
ces of variability in ORF, such as the characteristics of texts that
children read. The most prominent of these text characteristics is
text complexity. The appeal of text complexity as a source of sys-
tematic text-based ORF variability is intuitive: More complex
texts tend to be read more slowly because processing more com-
plex material takes more time. One way that standard formal
assessments of ORF have reduced text-based variability is by
using texts that are constructed to have comparable text complex-
ity. However, substantial text-based variability in WCPM has still
been observed in these texts (Ardoin et al., 2005; Compton et al.,
2004; Francis et al., 2008), suggesting that text complexity is not
the only source of systematic text-based variability in ORF.
In this article, we pursue two new avenues in studying text-

based ORF variability. First and most importantly, we consider
that oral reading requires pronouncing the text aloud, which
makes it subject to the same articulatory and prosodic constraints
as other types of speech productions. Despite much work showing
developmental differences in the production and use of prosody
when reading aloud (e.g., Ardoin et al., 2013; Kim & Wagner,
2015; Miller & Schwanenflugel, 2006), text features that constrain
prosody (e.g., the segmental composition of the text, the amount
of phrasal boundaries) have not been incorporated in studies and
accounts of text-related ORF effects in educational psychology
(e.g., Barth et al., 2014; Compton et al., 2004; Francis et al.,
2008). We propose that these production-related effects—which
the phonetic and speech production literatures treat as fundamental
constraints on the duration of utterances—are also important sour-
ces of text-based ORF variability. That is, texts that have similar
levels of complexity or the same number of words or syllables
may still have different expected durations when read aloud due to
differences in texts’ production demands, and this would lead to
differences in reading rate.
Second, we extend the empirical basis of research on text-based

ORF variability by considering materials beyond those selected or
constructed for formal assessments of ORF. Understanding the
impact of text features on ORF in texts beyond standardized mate-
rials would help evaluate whether ORF can also be measured on
materials that are read for knowledge or for pleasure, which would
have wide-ranging practical implications.
We first explain the reasons for considering materials beyond

standardized test passages and then focus on production-related
effects in oral reading, which we consider to be the main contribu-
tion of this article.

Data From Extended Book Reading

Rather than constructing reading materials or using standardized
test passages, as is common practice when formally assessing
ORF, we consider a setting where the oral reading data come from
a classroom-based oral reading program that uses a popular novel.
To our knowledge, this is the first attempt to analyze text-based
variability in ORF using data from children casually reading a
popular fiction book for an extended period of time.

Using such data extends the empirical basis for studying the
relationships between text features and children’s oral reading
because reading full-length fiction books constitutes a different
reading experience from reading test passages. Passages in fiction
books exhibit substantial variation in text complexity, above and
beyond what children would encounter in a typical ORF assess-
ment. For example, passages from Harry Potter and the Sorcerer’s
Stone (Rowling, 1997) exhibit Grade 2 to Grade 11 complexity
(Beigman Klebanov et al., 2017), and passages from Black Beauty
exhibit Grade 2 to Grade 9 complexity (see Table A8 of Milone,
2014). This makes them quite different from standardized test pas-
sages, which are written to specification. For example, authors of
passages from the Dynamic Indicators of Basic Early Literacy
Skills (Good & Kaminski, 2002), a standard ORF assessment, are
instructed to meet a specified target in terms of the interplay
between average sentence length and average word length as
reflected in the Flesch-Kincaid formula (Flesch, 1948; Kincaid et
al., 1975), a classic text complexity metric. The authors are also
told to use grade-level appropriate vocabulary and avoid dialogue,
slang, and too much humor, among other criteria (Biancarosa et
al., 2019; pp. 26–27).

Clearly, texts for assessing reading skills exhibit different char-
acteristics from fiction books because these texts were written
with different goals. Nevertheless, the same text features could
affect the oral reading of both types of texts. The constraints
placed on standardized test passages, however, can limit variation
in text features in ways that make it difficult to appreciate the
range of text-based effects on ORF without a contrasting set of
materials where such constraints are not imposed. This motivates
our use of a popular fiction book in the current study to investigate
potential sources of text-based ORF variability beyond text
complexity.

In terms of educational practice, the ability to measure ORF on
a wider variety of texts, including texts written for reading rather
than for testing, would increase educators’ flexibility in measuring
ORF by providing an expanded set of materials to measure ORF.
Moreover, if students’ fluency can be assessed while they are read-
ing to learn or simply for pleasure, this could save valuable class
time that would otherwise be spent on reading special ORF assess-
ment materials.

Beyond Text Complexity: Production-Related Effects
in ORF

The effects of text complexity on ORF have been primarily
attributed to how its component features affect the processing of
the text. As a historical example, Flesch-Kincaid (Flesch, 1948;
Kincaid et al., 1975) uses average sentence length (in number of
words) and average word length (in number of syllables) to esti-
mate the complexity of a text. Because longer words tend to be
less frequent and more morphologically complex (New et al.,
2006) and longer sentences tend to be more syntactically complex
(Wang, 1970), texts that consist of longer words and longer sen-
tences would take longer to process on average (Lewis &
Vasishth, 2005; Wang, 1970).

Similar explanations have been used to describe how text fea-
tures in more recent and comprehensive text complexity metrics
such as Lexile (Stenner et al., 2006), Coh-Metrix (Graesser et al.,
2011), and TextEvaluator (Sheehan et al., 2014) might affect
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ORF. Theories on narrative comprehension and discourse process-
ing posit that text complexity is related to ORF because its compo-
nent features affect how quickly various levels of mental
representations are accessed and integrated during reading.
To overview, the event segmentation theory (Zacks et al., 2009;

Zacks & Swallow, 2007), the event index model (Zwaan et al.,
1995), and the structure building framework (Gernsbacher, 1997)
converge on the idea that readers continuously monitor texts for
when ideas or events start and end. In doing so, readers form
“event models” for the text which consist of expectations about
what the upcoming text is likely to talk about. When the upcoming
text is aligned with the reader’s expectations, the reader’s event
model is reinforced and the processing of upcoming text is facili-
tated. When the two begin to drift apart, the reader resolves this
separation by noting its location as an event boundary. The reader
then updates their event model with this additional structure, and
they momentarily suppress their predictions and become more
careful in processing upcoming text until the event model becomes
stable enough to produce reliable predictions for upcoming text
again.
Based on these accounts, text complexity is related to ORF

because its component features, such as narrativity, lexical cohe-
sion, and concreteness, affect readers’ ability to form event mod-
els. For example, narrativity would affect ORF because it affects
the predictability of events in the text. Texts that are more narra-
tive/story-like rather than informational/expository would be read
faster because the predictable structure of narrative texts makes it
advantageous for readers to rely on their expectations and prior
knowledge of such texts to facilitate their reading (Perfetti, 1994).
Lexical cohesion would affect ORF because it facilitates the con-
nections between potential event boundaries. Texts that have
“deeper” cohesion, where independent ideas are more tightly
linked with various linguistic devices such as connectives (e.g.,
because, therefore; Graesser et al., 2011), would be read faster
than texts that are less cohesive. Connecting ideas would keep past
information activated as readers update their discourse model
(O’Brien et al., 1995; Suh & Trabasso, 1993), and this sustained
activation of overlapping content would facilitate processing of
the text (Kintsch, 1988), which would lead to faster reading. Lexi-
cal concreteness would affect ORF because it generates imagery
that strengthens event memory representations (Marschark et al.,
1994; McDaniel et al., 1995) and reinforces the reader’s event
model. Texts with more concrete words would be read faster
because they widen event segments and reduce the need to update
event models by keeping them stable. Consistent with these
expectations, empirical studies have shown that ORF is strongly
related to text complexity (Barth et al., 2014; Betts et al., 2009;
Fuchs et al., 2001; Hintze et al., 1998). In Barth et al. (2014), text
complexity and various component features accounted for about
half of the text-based ORF variability of middle-school students.
Because of the strong relations between text complexity and

ORF, text complexity metrics are often used to select or create
passages for measuring ORF (e.g., Barth et al., 2014; Biancarosa
et al., 2019). Given that a substantial part of text-based ORF vari-
ability remains to be explained after controlling for the effects of
text complexity and/or their component features (Ardoin et al.,
2005; Barth et al., 2014; Compton et al., 2004; Francis et al.,
2008), it is surprising that other effects beyond those related to the

processing of the text have yet to be closely studied as potential
sources of this variability.

Drawing on extensive literature on speech production, we con-
sider in this article that production-related effects are another im-
portant source of text-based ORF variability. Because oral reading
involves reading aloud, properties of the text that affect its produc-
tion generally affect how the text is read and should thus be con-
sidered as possibly contributing to text-based ORF variability.

There is abundant evidence that systematic differences in the
duration of utterances arise because of segmental (subword) and
prosodic effects (for reviews, see Hirschberg, 2002; Loukina et al.,
2018; White, 2014), and these differences manifest at multiple lin-
guistic levels.1 At the segmental level, different segments have dif-
ferent intrinsic durations and they are subject to consistent effects
of phonetic context (Klatt, 1976; Peterson & Lehiste, 1960; van
Santen, 1992): for example, high vowels tend to be shorter than
low vowels, vowels tend to be shorter when followed by a voice-
less consonant than when followed by a voiced consonant (Crystal
& House, 1988; House & Fairbanks, 1953), and segments tend to
be longer in word-initial positions (Turk & Shattuck-Hufnagel,
2000, 2007). At the word level, syllables bearing the lexical stress
tend to be lengthened, particularly in monosyllabic words, but this
lengthening attenuates and spreads to unstressed syllables in poly-
syllabic words (Turk & Shattuck-Hufnagel, 2000; White & Turk,
2010). In addition, words tend to be uttered more quickly when
they are frequent, predictable, and have been repeated (Bell et al.,
2009; Zhao & Jurafsky, 2009). At the phrase/clause/sentence
level, prosodic boundaries are indicated by phrase-final lengthen-
ing and often by a pause, with sentence-final pauses being the lon-
gest (Bailly & Gouvernayre, 2012; Burrows et al., 2005; Pfitzinger
& Reichel, 2006; Turk & Shattuck-Hufnagel, 2000; 2007). Thus,
two texts containing the same number of words or syllables may
still have different expected durations when read aloud because of
differences in segmental and prosodic structure, and this would
lead to differences in reading rate. Importantly, children exhibit
these production effects, even as developing readers (Miller &
Schwanenflugel, 2006).

These findings collectively suggest that effects beyond text
complexity—production-related effects, specifically—ought to be
considered when studying sources of text-based ORF variability to
develop a fuller picture of where this variability arises. However,
capturing production-related effects is challenging because there
are many text properties that affect production and they interact in
complex ways (Hirschberg, 2002; White, 2014). Fortunately,
many of these features are already incorporated in timing models
used in modern text-to-speech synthesis (TTS) systems: the dura-
tions of segments and pauses produced by a TTS system for a
given text are computed based on models that incorporate proper-
ties such as segment identity and context, stress, part-of-speech
context, and prominence (e.g., Capes et al., 2017). Thus, these sys-
tems generate renditions that serve as good estimates of how a
comprehensive set of text properties would interact to constrain
how the text would be uttered. We used TTS-based estimates of
reading rates for texts to capture production-related effects on oral

1 Some of these effects are universal, others are language-specific. In
this review, we focus on the ones that have been shown to exist in English,
the language considered in this article.

BEYOND TEXT COMPLEXITY 3

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



reading and to estimate how much text-based ORF variability is
attributable to production-related effects.

Research Questions

In this study, we analyzed data from upper elementary school
children in northeast United States who read out loud Harry Potter
and the Sorcerer’s Stone (HP1; Rowling, 1997), a popular fiction
book, with a reading app in a relaxed, naturalistic setting. Using
these data, we sought to answer the following questions about
text-based ORF variability:

1. How much text-based variability is present in WCPM
based on reading passages from a fiction book?

2. How much of the text-based variability in WCPM can
text complexity explain on its own?

3. How much of the text-based variability in WCPM can
production-related effects explain on their own?

4. Do production-related effects explain text-based WCPM
variability above and beyond text complexity?

Method

Participants

Fifty-six students (26 females [46%]; Mage = 9.61; SD = 1.06;
no age information for seven students2) were part of a larger sam-
ple that participated in this naturalistic reading study that was con-
ducted in the context of summer camp and afterschool reading
activities (see Procedures). Of these 56 students, 46 (82%) were
from English-speaking households, one was from a Spanish-
speaking household, and nine did not have this information avail-
able. Twenty-seven of these students (eight females [30%]; Mage =
9.58, SD = 1.32) participated in a camp held during the summer of
2017 in New Jersey. The other 29 students were similar in age (18
females [62%]; Mage = 9.63, SD = 0.78) and participated in two
camps held during the summer of 2018 in the New York metropol-
itan area.
The sampled students are in upper elementary grade levels, at

which point readers are continuing to develop (as opposed to just
starting or to have largely established) their skills at reading effi-
ciency, phonological decoding, and vocabulary (Daane et al.,
2005; Torgesen et al., 2001). At this stage, readers are generally
transitioning from “learning to read” to “reading to learn,” where
readers increasingly focus on using their reading skills to learn in
various subject areas.

Materials: Reading App

The oral reading data were collected through Relay Reader (for-
merly MyTurnToRead; Beigman Klebanov et al., 2019; Madnani
et al., 2019), an app designed to facilitate sustained reading among
developing readers by providing them with additional practice to
transition from “learning to read” to “reading to learn” (see Figure
1 for a screenshot of the mobile version). It encourages readers to
read for meaning and pleasure through the use of (audio)books

and technology to enhance engagement, alleviate frustration, and
obtain immediate feedback. The app provides an interleaved and
interactive oral reading context, where the reader takes turns read-
ing passages aloud (see “reader” icon in Figure 1) with a model
narrator (i.e., the audiobook narrator; “headphones” icon) and reg-
ularly answers comprehension questions about the passages to
monitor understanding of the text. To create the passages, the
book is divided into paragraphs and consecutive paragraphs are
combined until a desired passage length (in number of words;
determined by the researchers for this study) is achieved. Thus,
each passage always starts and ends with a paragraph break: For
example, in Figure 1, one paragraph is sufficient for the passage

Figure 1
A Screenshot of the iOS Version of
Relay Reader

Note. The text is highlighted during the nar-
rator’s turn (which is indicated by the
“headphones” icon) to encourage the reader
to silently read along with the narrator.
Image used by permission; © 2019
Educational Testing Service. www.ets.org.
Text used by permission; “Harry Potter and
the Sorcerer’s Stone” by J.K. Rowling. ©
1997 by J.K. Rowling. See the online article
for the color version of this figure.

2 All sites/summer camps grouped the students by age; students with no
age information were enrolled in the same groups as students for whom age
information was available.
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assigned to the reader, given the desired passage length. The read-
er’s oral reading is recorded in the app.

Procedure

Data Collection A

Data Collection A took place between July 2017 and October
2017 across five locations/sites in New Jersey. A prototype version
of the app was locally installed in laptops that were brought to
each site during the data collection period. The data collection was
supervised by the project staff.
Data collection at each site occurred over five consecutive days,

where each day consisted of a 20-minute session. The first session
involved assessing students’ prior knowledge of HP1 (i.e., Have
they read the book and/or seen the movie before?) and other read-
ing-related activities. The subsequent four sessions involved read-
ing with the app. During a reading session, each student
individually read with the app through headphones with built-in
microphones. Students were told to read aloud as they typically
would.
All students started at the beginning of the book in the first read-

ing session. The session started with students listening to the re-
cording of Jim Dale, a renowned British actor who narrates the
audiobook (Rowling & Dale, 2016), reading the first passage of
the book. After Jim Dale’s “turn,” students indicated that they
were ready to start their turn, after which the app started recording
their oral reading. Students took as much time as they needed for a
turn, after which they clicked a button to indicate that they were
done reading. No feedback was provided to students during their
reading turns, and students could not rerecord their reading of pre-
vious passages. Students “took turns” with Jim Dale. When stu-
dents moved on to the next chapter, the beginning passage was
always read by Jim Dale regardless of who read the final passage
of the previous chapter.
After 20 minutes into the reading session, the app automati-

cally timed out and students answered three multiple-choice or
yes/no comprehension questions about the passages they read
during the session. These questions were fact-based, in that they
were always about information explicitly described in the pas-
sages (e.g., What did the “put-outer” do? Who did Dumbledore
plan for Harry to live with? Did Harry enjoy spending time with
Mrs. Figg? How did the letters arrive on Saturday? Why did
Harry have no friends at school?). These questions were intended
to check that students were paying attention to the story while
they were reading aloud.
Each subsequent reading session always started with students

listening to Jim Dale read the passage that they last read but did
not finish in the previous session. Other than this, the subsequent
reading sessions proceeded the same way as the first.

Data Collection B

Data Collection B took place between June 2018 and August
2018 in two sites in the New York metropolitan area. For this data
collection, a new beta version of the app (Madnani et al., 2019)
was installed on tablets that were either available at the site or pro-
vided to the students by the research staff.
In both sites, regular reading sessions with the app were

scheduled as part of the camp program. The reading sessions

were scheduled and monitored by the camp instructors. One
program ran for 6 weeks and included a reading session with
the app for 20–50 minutes, four days a week, with fewer days
in the first week of the camp. The second program ran for a
total of 8 weeks (different children were enrolled for a differ-
ent number of weeks) with a variable reading schedule depend-
ing on other camp activities; each reading session included
about half an hour of reading and half an hour of related games
and activities.

The structure of the reading sessions was the same as in Data
Collection A: Students alternated between listening to the narra-
tion and reading aloud during their own turn. However, unlike
Data Collection A, the sessions did not automatically time out af-
ter 20 minutes of reading. Students were also asked two multiple-
choice reading comprehension questions for every two turns they
made; the turn count reset at the end of each session, so that at the
start of a new session, students still made two turns before answer-
ing questions. As in Data Collection A, students could not rerecord
their reading of previous passages; they also could not reanswer
comprehension questions they already answered.

At the end of the data collection period, students were asked if
they have read the book or seen the movie before. They also indi-
cated how much they agreed with the statement “The Harry Potter
book was boring” on a four-point scale (Strongly disagree, Dis-
agree, Agree, Strongly agree) as a rough measure of overall inter-
est and engagement with the book.

Focal Measures

Oral Reading Fluency: WCPM

All recordings of children’s reading were transcribed by a pro-
fessional transcription agency. The transcribers were given the
audio recording and the passage text and were asked to indicate
which words were substituted, deleted, and inserted by the student.
The transcribers also indicated any task-irrelevant speech. Finally,
the transcriptions contained timestamps in seconds indicating the
beginning of the first uttered word in the passage and the end of
the last uttered word in the passage.

We used these transcriptions to compute WCPM. To do this, we
first computed the number of words in each passage that have not
been marked as deleted or substituted. We then computed the time
(in seconds) it took the student to read the passage by taking the
difference in the timestamps of the first and the last word uttered
for that turn. With these numbers, we computed WCPM as shown
in Equation 1.3

WCPM ¼ total number of words read correctly
time spent reading in seconds

3 60 (1)

3WCPM is typically estimated by either having the reader read a test
passage for one minute (Barth et al., 2014; Daane et al., 2005; Good &
Kaminski, 2002) or by having the reader read a passage and dividing the
number of correctly read words by the duration of the turn in minutes
(Bernstein et al., 2017; Daane et al., 2005), as done here. Daane et al.
(2005) compared the two approaches in a nationally representative study of
Grade 4 students in the United States and reported that both were positively
correlated with comprehension ability.
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Text Complexity: TextEvaluator Scores

To examine the effects of text complexity, we used TextEvalua-
tor as our measure of the text complexity of HP1 passages. TextE-
valuator (formerly SourceRater) is a state-of-the-art tool that has
been validated against expert judgements of text complexity
(Napolitano et al., 2015; Sheehan et al., 2014). TextEvaluator
extracts a wide range of linguistic features from passages—which
includes simpler text complexity measures such as Flesch-Kincaid—
and combines these features into 8 dimensions based on factor analy-
sis (i.e., academic vocabulary, concreteness, degree of narrativ-
ity, interactive/conversational style, level of argumentation,
lexical cohesion, syntactic complexity, and word unfamiliarity).
It then computes text complexity scores based on combinations
of these dimensions that have been optimized for literary, infor-
mational, and mixed texts. Thus, the tool provides a comprehen-
sive account of features that have been shown to affect text
complexity. TextEvaluator is highly correlated with various text
complexity metrics such as Lexile (Stenner et al., 2006), Coh-
Metrix (Graesser et al., 2011), Reading Maturity Metric (RMM;
Landauer et al., 2011), ATOS (Milone, 2014), Degrees of Read-
ing Power (DRP; Zeno et al., 1995), and Reader-specific Practice
(REAP; Collins-Thompson & Callan, 2004), and it generally
outperformed these metrics when evaluated against standard
benchmarks and teachers’ estimates of grade level difficulty
(Nelson et al., 2012; Sheehan et al., 2014; Toyama et al., 2017).
TextEvaluator scores are scaled from 100 to 2,000, with higher
numbers indicating higher text complexity.

Production Constraints: Reading Rate Estimates From
TTS Synthesis

To capture production constraints, we need a model that takes
into account text properties that would predict how fast texts
would be read in terms of words per minute, such as the nature of
individual segments, the distribution of stressed syllables, and pro-
sodic boundaries. One way to account for these properties is by
building a model that predicts the relative duration of each seg-
ment and the location and duration of pauses in a given text. We
can then use this model’s predictions to compute the expected
words-per-minute rate for the text.
Because there is a considerable number of text properties that

affect speech production, building a model that captures these
properties is a challenging task. Fortunately, accurate prediction of
segment and pause durations based on text properties is a task that
has many applications, including speech technologies, and it has
been actively explored in research on text-to-speech synthesis
(Tokuda et al., 2016; van Santen, 1994; Yoshimura et al., 1999;
Zen et al., 2009). Modern text-to-speech (TTS) systems incorpo-
rate complex timing models for estimating the duration of each
segment based on segmental, prosodic, and other factors. There-
fore, we used a state-of-the-art TTS engine to model production-
related effects. To make it easy to reproduce our results, we used
Apple Inc.’s widely available and built-in TTS engine (OS X
10.11.6). Like other TTS engines, Apple’s systems use text fea-
tures such as stress, part-of-speech, context, and sentence type to
model timing patterns (among other things) and are evaluated
against the judgment of native listeners (see, e.g., Capes et al.,
2017) for a description of a similar system and its evaluation).

We used the male-Alex voice with default settings to synthesize
audio files of the HP1 passages and computed reading rate esti-
mates of the passages using these audio files. To compute the
expected reading rate for each passage in words per minute, the
total number of words in the passage was divided by the duration
of the passage’s synthesized audio in seconds from the start of the
first word to the end of the last word and then multiplied by 60.
Because these reading rate estimates were derived from a large set
of features that have been shown to affect utterance duration, these
estimates can be thought to come from a digital model of oral sen-
tence reading that adheres to phonological and prosodic con-
straints in production.

Data Description

The dataset used in this study consisted of 964 reading turns
from the 56 students described in the Participants section, and it
came from a larger dataset that was preprocessed to address mea-
surement issues related to collecting data in naturalistic settings
(see Appendix A for details). The dataset contained 346 different
passages from the first ten chapters of the book (mean length =
175.00 words; SD = 77.82; Min = 14.00; Max = 436.00). Because
students read at their own pace and passages were assigned to
them based on where they started reading at the beginning of a
reading session (i.e., where they were “bookmarked” in the book),
students read different passages from the 346 total passages. Thus,
the dataset is cross-classified, where students read 1 to 93 passages
(e.g., some students only read one passage, some read 93 passages,
but no one read all 346 passages; Mdn = 11.00; SD = 18.61) and
passages were read by one to 13 students (e.g., some passages
were only read by 1 student, some were read by 13 students, but
no passage was read by all 56 students;Mdn = 2.00; SD = 2.55).

Looking within each Data Collection Procedure, the data from
Data Collection A contained two to 19 turns per student (Mdn =
10.00; SD = 5.25), resulting in 282 reading turns available for
analysis. Because this data collection period only lasted for five
days, students were only able to read early passages in the book.
The data from Data Collection B contained 1 to 93 turns per stu-
dent (Mdn = 14.00; SD = 23.87), resulting in 682 reading turns
available for analysis. Because this data collection lasted for a lon-
ger period, students read farther into the book on average (i.e.,
around Chapter 3) and showed greater variability in how far and
how much they read. Table 1 summarizes the nesting structure of
these turns across students within sites.

Results

Descriptive Statistics

Student-Level Characteristics

The top section of Table 1 reports descriptive information about
the students in our sample. Whereas students’ mean WCPM were
similar across data collection procedures and sites (see also statis-
tical models below), there was clear between-student variability in
WCPM (M = 99.72; SD = 24.74) and oral reading accuracy (M =
0.93; SD = 0.06). Their WCPM means are well within the inter-
quartile range of expected WCPM values for their age group based
on norms (Hasbrouck & Tindal, 2017). Overall, students’ correctly
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answered comprehension questions about the HP1 passages con-
siderably above chance levels (M = 0.73; SD = 0.19). Collectively,
these statistics indicate that the students analyzed here were gener-
ally not struggling readers and were generally paying attention to
the story while reading aloud.
Regarding their familiarity with HP1, 20 (36%) of the students

indicated that they have read the book or seen the movie before.
As for their interest and engagement with HP1 (at least for Data
Collection B), students generally disagreed that HP1 was boring
(67%), suggesting that they liked the story overall.
As a surface validity check on our measures, we also inspected

the correlations between these student-level characteristics (see
Table 2). As expected, students’ accuracy on HP1 reading compre-
hension questions were also strongly correlated with their mean
WCPM (r = 0.53), consistent with the idea that more fluent readers
have automated decoding skills that allow them to focus on under-
standing of the text, leading to higher comprehension accuracy
(Fuchs et al., 2001; Kim et al., 2010, 2011). This result also indi-
cates that students were reading the text with the goal of under-
standing it and not just to read it swiftly out loud.
It is also notable that the number of reading turns a student made is

largely unrelated to their reading fluency, their accuracy for the reading
comprehension questions, and their interest in the book: The number
of turns made is only weakly and marginally related to WCPM (r =
0.23; p = .08), whereas it was not correlated with their accuracy on the
comprehension questions and interest in the book. Thus, stronger and
more fluent readers did not necessarily read more text or found the text
more interesting than their weaker and less fluent peers.

Passage-Level Features

Table 3 shows the descriptive statistics for the text features
obtained on the 346 passages in the dataset. TextEvaluator scores
for the passages (treated as literary texts) ranged from 50 to 1150
(M = 574.60, SD = 182.84), which corresponds to below Grade 1
to Grade 12 range of text complexity and is consistent with the
observed distribution of text complexity across this book (Beig-
man Klebanov et al., 2017). TTS reading rate estimates ranged
from 85.06 to 189.16 words per minute (M = 154.77; SD =
13.16). This range is similar to variation in oral reading rates
observed in adult readers (Loukina et al., 2018). Lastly, TextEva-
luator scores are positively correlated with TTS estimates: more
complex passages are estimated to be read faster based on TTS
(r = 0.42, p, .001).

Turn-Level Characteristics

As part of the Data Preprocessing Procedure, we only considered
and analyzed turns where WCPM was within 50 and 219 WCPM and
accuracy was above 70% because turns that fail these criteria probably
do not consist of bona fide, uninterrupted, and complete readings of a
passage (see Appendix A for details). The bottom section of Table 1
summarizes the descriptive statistics for turns that met these criteria.
For these turns, average WCPM were similar across data collection
procedures and sites but there was substantial variability across turns,
suggesting the presence of both text-based and student-based variabili-
ty in WCPM. Overall average turn accuracy has little variability and is
well above 90%, the level of accuracy below which would begin to
suggest frustration from having difficulties in reading (Hasbrouck &
Tindal, 2017). These results indicate that the reading turns used in this
study reflect data in which students are reading at appropriate instruc-
tional levels, in that they are challenged but are not frustrated from
reading the assigned material.

Planned Analyses: Mixed-Effects Models

We fit a series of mixed-effects models4 to address our research
questions. The first model we fit was a baseline model that con-
trolled for data collection procedure as a fixed effect and included
sites, students, and passages as random effects (where students
were nested within sites; Model 1 in Table 4). The R syntax corre-
sponding to this baseline model is given in Equation 2.

wcpm�DataCollectionþ ð1jsiteÞ
þ ð1jsite:studentÞ
þ ð1jpassageÞ (2)

With this model, we estimated the amount of student-based and
text-based variability in our data to answer RQ1. This model
showed that 9% of the variance in WCPM is attributable to pas-
sages, 64% to students/readers, and 27% to residual variance,
which leaves no variance in WCPM attributable to site.5 These

Table 3
Descriptive Statistics for Text Feature Measures Obtained on
HP1 Passages (N = 346)

Measure M SD Min Max r

TextEvaluator 574.60 182.84 50.00 1,150.00 1
TTS 154.77 13.16 85.06 189.16 0.42*** 1

Note. HP1 = Harry Potter and the Sorcerer’s Stone; TTS = text-to-speech
synthesis.
*** p # .001.

Table 2
Correlations Between Student Characteristics

Variable

Correlation

1 2 3 4 5

1. Age 1
2. WCPM 0.22 1
3. nturns 0.06 0.23 1
4. Harry Potter Accuracy 0.06 0.53** 0.10 1
5. The Harry Potter book was boring.a �0.44 0.08 �0.15 �0.37 1

Note. WCPM = word count per minute.
a Because this variable is on an ordinal scale, these coefficients refer to
Spearman correlations; N = 18.
** p # .01.

4 Also known as multilevel or random-effects models. All mixed-effects
models reported in this study were fit with restricted maximum likelihood
using version 1.1-13 of the lme4 package (Bates et al., 2015) in R (R Core
Team, 2017). Significance tests for parameter estimates were performed
using version 3.0 of the lmerTest package (Kuznetsova et al., 2017).

5 The site variance estimate of zero across all fitted models suggests that
the variability among sites has already been captured by variation among
students within sites. Nonetheless, we decided to retain the site term when
possible to properly acknowledge the actual nesting structure of the current
data. Note, however, that the size of the dataset precludes us from inferring
that there is really no variation in WCPM across sites.
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results show that some variability in WCPM is associated with dif-
ferences in the passages, even if much more variability is associ-
ated with differences across students. We note that the estimated
text-based variability is similar to the 1% to 10% reported in previ-
ous work that used standardized test passages to evaluate ORF
(Barth et al., 2014; Christ & Ardoin, 2009; Kim et al., 2010; Poncy
et al., 2005). There was no difference in WCPM attributable to the
data collection procedure (t = 1.07, p = .29), and this held for all
the models reported below.
This baseline model was followed by three models. To answer RQs

2 and 3, TextEvaluator scores and TTS-based estimates were each
added as a sole predictor to the baseline model (Models 2 and 3) to
determine how much text-based variability each feature accounted for
by itself. To answer RQ4, both text features were added to the baseline
model (Model 4) to determine how much variability they accounted
for together but independent of each other. The features were mean-
centered (i.e., z score–transformed) across passages. The models were
specified with the maximal random effects structure (Barr et al., 2013):
Random slopes and associated random-effect correlations (i.e., inter-
cept-slope and slope-slope correlations) were all specified for each
additional predictor to maintain nominal false positive rates and to
account for individual differences in the predictors’ effects. Table 4
summarizes these sets of models, and Table 5 shows the amount and
percentage of text-based WCPM variance explained by each predictor
as they were added to the baseline model.
Surprisingly, TextEvaluator scores did not significantly predict

WCPM (Model 2; b = �0.27, t = �0.28, p = .78) nor accounted
for any text-based WCPM variability by itself, contrary to studies
based on standardized test passages that report significant relation-
ships between text complexity and ORF (Barth et al., 2014; Betts
et al., 2009; Hintze et al., 1998). On the other hand, TTS-based
estimates significantly predicted WCPM by itself and accounted
for 21% of text-based WCPM variability: passages for which TTS
estimated faster reading rates tended to be read faster by students
as well (model 3: b = 3.95, t = 4.90, p, .001).6

Adding TextEvaluator scores to a model that already contains
TTS-based estimates (Model 4) resulted in both features being sig-
nificant predictors of WCPM. As before, passages for which TTS
estimated faster reading rates were still associated with higher
WCPM (b = 5.81, t = 5.91, p , .001), indicating that production-
related effects still influenced WCPM after controlling for text
complexity, as they did when TTS-based estimates were used as
the sole predictor of WCPM. At the same time, passages with
higher TextEvaluator scores were now associated with lower
WCPM (b = �3.48, t = �3.14, p = .003), which is consistent with
the expectation that more complex passages prompt slower oral
reading from children. However, this effect is significant only after
adjusting for production-related effects.7 This model explained
40% of text-based WCPM variability, which is 19% more than
what is explained by TTS-based estimates alone.8 This final model

Table 4
Summary of Planned Mixed-Effects Models Fit to WCPM Data

Model
Model 1

Null model
Model 2

TextEvaluator
Model 3
TTS

Model 4
TextEvaluator þ TTS

Fixed effects b t b t b t b t

Intercept 103.86 21.09*** 103.73 20.92*** 102.19 21.00*** 102.00 20.69***
Data Collection �7.26 �1.07 �6.82 �1.00 �4.79 �0.72 �4.39 �0.65
TextEvaluator �0.27 �0.28 �3.48 �3.14**
TTS 3.95 4.90*** 5.81 5.91***

Random effects SD r SD r SD r SD r

Site
Intercept 0.00 0.00 0.00 0.00

Student
Intercept 24.40 24.54 1 24.14 1 24.57 1
TextEvaluator 2.57 0.20 4.02 0.05 1
TTS 1.63 0.74 3.03 0.33 �0.85

Passage
Intercept 8.99 8.97 8.00 6.96

Residual 15.93 15.78 15.83 15.67

Note. Reference category for Data Collection is Data Collection A. TextEvaluator scores and TTS-based estimates were standardized across passages.
WCPM = word count per minute; TTS = text-to-speech synthesis.
** p # .01. *** p # .001.

6We consider the possibility that this result is due to idiosyncrasies of
the TTS model we used. That is, although the TTS model incorporates a
comprehensive set of production constraints, it is still an imprecise model
because it encounters issues in capturing particularities in human speech,
so the result may not be credible. To address this concern, we computed the
reading rates of Jim Dale, the actor who narrated the audiobook, for each
passage using the approach described in Loukina et al. (2018) and replaced
the TTS-based estimates with these measurements. Although Jim Dale’s
reading rates are faster and more variable than the TTS-based estimates
(M = 159.00; SD = 15.40), his reading rates are still strongly correlated
with the TTS-based estimates (r = 0.74). We found the same results using
Jim Dale’s reading rates: On their own, his reading rates significantly
predicted WCPM (b = 3.85, t = 4.97, p , .001) and explained 17% of text-
based WCPM variability. This suggests that the results are not attributable
to idiosyncrasies in the TTS model used in this study.

7 In the multiple regression literature, such effects—where a predictor
has no marginal effect on the outcome but has an effect on the outcome
conditional on the addition of another predictor—are referred to as
“suppressor variable effects” (Cohen et al., 2013).

8We found the same results when we replaced the TTS-based estimates
with Jim Dale’s reading rates.
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illustrates that production-related effects on ORF are separable
and qualitatively different from text complexity effects.

Follow-Up Analyses

In this section, we check the robustness of results from our
planned analyses and explore potential explanations for some of
them. Namely, we first evaluate whether production-related
effects depend on student characteristics. Given that produc-
tion-related effects explain a large amount of text-based ORF
variability, it is important to determine whether these effects
are only driven by specific sets of students. Second, we explore
why we failed to observe a text complexity effect for HP1 pas-
sages. It is surprising that TextEvaluator scores did not predict
WCPM on their own, given that text complexity is purported to
be an important and independent predictor of ORF, albeit in
standardized test passages (Barth et al., 2014; Betts et al., 2009;
Hintze et al., 1998). We explore a hypothesis that TextEvalua-
tor’s effect was only revealed when we accounted for TTS
estimates because marginal text complexity effects reflect a
combination of text-complexity-related and production-related
effects that may go together or counteract each other. Overall,
these follow-up analyses support the results of the planned anal-
yses and show that production-related effects are a robust
source of text-based ORF variability.

Exploring Whether Production-Related Effects Are Only
Driven by Specific Students

A potential concern about production-related effects being an
independent source of text-based ORF variability is that these
effects are only present in specific kinds of readers. For exam-
ple, production-related effects might only be present for stu-
dents who are already familiar with the text or who understand
the text better. The event segmentation theory (Zacks et al.,
2009; Zacks & Swallow, 2007), the event indexing model
(Zwaan et al., 1995), and the structure building framework
(Gernsbacher, 1997) converge on the expectation that students’
familiarity and understanding of the book would facilitate the
development of their discourse model. Their familiarity pro-
vides a head start on initializing the mental representations of
characters and settings and their understanding of the story
strengthens these representations. This facilitation and strength-
ening prevents students from struggling to read story-specific
elements (e.g., in HP1: reading new character names like
McGonagall and Dumbledore, names of spells) and pushes their
reading to be more aligned with what is expected based on the
timing models in TTS systems. It might also go the other way,

where these effects might be absent for students who are famil-
iar with the text or understand the text better because these
readers use their familiarity and understanding to infuse their
reading with extralinguistic information (e.g., exaggerations
based on character persona, events) so that their reading would
not be consistent with what is expected based on the timing
models in TTS systems. Either way, if production-related
effects are only present in specific kinds of readers, we should
expect the effect of TTS estimates to be modulated by various
student characteristics one way or another.

To explore this possibility, we fit a follow-up model to
Model 4 (TextEvaluator þ TTS) with several additional terms
in the model. We added students’ prior familiarity with HP1,
accuracy for HP1 questions, age, and the interactions of these
factors with TextEvaluator scores and TTS estimates to exam-
ine whether our focal effects are modulated by student charac-
teristics. We also added students’ turn index within a reading
session and its interaction with the data collection procedure as
measures of how far students are into a reading session within
each data collection procedure. These measures account for the
effects of student fatigue within a session and possible differen-
ces in the effect of fatigue on WCPM across data collection
procedures. We also added students’ gender, the number of
valid turns they made, and their interest in the HP1 story
as additional student characteristics. Table B1 in Appendix B
summarizes this model (Model 5).

Whereas Model 5 explains 20% of student-level WCPM
variability, it does not explain any additional text-based
WCPM variability on top of Model 4. As in our planned
models, TextEvaluator scores and TTS estimates still signifi-
cantly predicted WCPM. Of the added terms, only accuracy
on the HP1 comprehension questions significantly predicted
WCPM: students who were more accurate had higher WCPM
(b = 0.53, t = 2.82, p = .007). This effect was qualified by a
significant interaction with the effect of TTS estimates: pro-
duction-related effects were stronger for students who were
more accurate on the HP1 comprehension questions (b =
0.11, t = 2.08, p = .04). The significant effect of comprehen-
sion accuracy on WCPM (see also Table 2) suggests that the
more accurate students were more skilled readers, and having
certain reading skills in place may have made their oral read-
ing more aligned with expected prosodic patterns based on
production constraints. On the same note, the oral reading of
less accurate students likely contained more hesitations,
pauses, repetitions and other disfluencies that would not be
predicted by the TTS timing model, resulting in weaker pro-
duction-related effects for these students. Because this analy-
sis is exploratory, our findings would need to be confirmed

Table 5
Percentage of Text-Based WCPM Variance Accounted for by Text Features

Model Remaining Unexplained Text-Based Variance % Text-Based Variance Accounted by Model

Model 1: Baseline model 80.76
Model 2: TextEvaluator 80.47 0.36
Model 3: TTS 64.07 20.67
Model 4: TextEvaluator 1 TTS 48.50 39.95

Note. WCPM = word count per minute; TTS = text-to-speech synthesis. Model 4 (in boldface) accounts for most text-based variance among the models.
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and further tested in subsequent studies that explicitly focus
on individual differences in production-related effects. But
collectively, these findings suggest that production-related
effects are robust and that their strength might differ across
different types of students.

Exploring the Failure to Observe a Text Complexity
Effect: Text Features Have Complexity-Related Effects
and Production-Related Effects

In this section, we explore why we failed to observe a marginal
text complexity effect, given that text complexity is purported to
be an important and independent predictor of ORF, albeit in stand-
ardized test passages (Barth et al., 2014; Betts et al., 2009; Hintze
et al., 1998). We begin by noting that most text complexity met-
rics, including TextEvaluator, are based on a combination of pas-
sage features. Some of these features not only affect text
complexity but simultaneously also generate production con-
straints, and both text complexity and production constraints affect
the reading rate for a given text. Here, we explore the hypothesis
that marginal effects of text complexity on ORF (or lack thereof)
may reflect the composite effect of these features on oral reading.
To make this exploratory analysis manageable, we consider
Flesch-Kincaid (FK) as a case example which only has two
features.
Earlier, we described how FK’s effect on ORF has been attrib-

uted to how its component features—average word length and av-
erage sentence length—can affect the complexity of texts.
Simultaneously, however, word and sentence length impose proso-
dic and articulatory constraints that are unrelated to text complex-
ity. Longer words simply take more time to utter, implying that
fewer words can be uttered within one minute. As a result, all else
being equal, passages with longer words will be read with a lower
per-word reading rate as measured by WCPM than passages with
shorter words.9

The effect of sentence length on reading rate is more complex.
Syllables at the end of a sentence are pronounced more slowly—
an effect known as sentence-final lengthening (see, for example,
White (2014) for a comprehensive review). In longer sentences
(that is, a sentence with more words), this “lengthening penalty”
will be distributed over a larger number of words, leading to a
shorter average duration of each word in a longer sentence than in
a shorter one, all else being equal. As a result, longer words are
likely to slow reading rate by both increasing text complexity and
reading time, whereas longer sentences could have counteracting
effects on reading rate: Longer sentences make passages more
complex thereby slowing reading rate, but this effect could be
offset to some degree by prosodic constraints that make longer
sentences faster to utter (per word) than shorter sentences. Further-
more, if the same long sentences contained long words, word and
sentence length would interact (likely in a less straightforward
fashion) to affect reading rate. Consequently, the observed mar-
ginal effect of FK scores on ORF in each given set of passages
would depend on a composite of word and sentence length’s
effects on ORF because of the constraints they impose on both
text complexity and production.
We hypothesize that breaking down text complexity metrics in

this way helps explain both the absence of a marginal text com-
plexity effect in the current study and its presence in previous

work. In particular, we argue that the structure of the HP1 pas-
sages in the current study substantially differs from the structure
of the standardized test passages used in previous studies. Conse-
quently, the interplay between the text-complexity-related and pro-
duction-related effects of the passages’ features on ORF results in
different marginal text complexity effects in these two sets of
passages.

In turn, we also hypothesize that a marginal effect of text com-
plexity was observed in previous work that used standardized test
passages because the aspects of those passages that made them
more complex also happen to be those that make them be uttered
slower per word. That is, within those passages, the text-complexi-
ty–related and production-related effects on ORF operated in the
same direction, resulting in the intuitive finding that higher text
complexity scores, by themselves, predict lower ORF.

A Case Study: Comparing HP1 and DIBELS Passages. To
test these hypotheses, we obtained a sample of 160 passages from
the Dynamic Indicators of Basic Early Literacy Skills (DIBELS;
Good & Kaminski, 2002), a standard ORF assessment,10 and com-
pared them to the HP1 passages in the current study. We obtained
TextEvaluator scores and TTS reading rate estimates for each pas-
sage as we did for the HP1 passages.

Next, we compared how FK’s features—average word and sen-
tence length—contribute to variability in TTS-based estimates
between the two groups of passages (see Table 6). We standar-
dized word and sentence length within each group of passages to
assess each component’s relative importance in predicting TTS-
based estimates.

The models indicate that average word and sentence length are
significant predictors of TTS-based estimates and explain 44% and
62% of its variance in HP1 and DIBELS passages, respectively.
Moreover, the directions of their effects are identical between the
two groups of passages: Longer words slow down the oral reading
of passages, whereas longer sentences contribute to faster expected
reading rates, as explained above.

However, the components’ relative contributions in explaining
TTS-based estimates differ between the two groups of passages:
whereas sentence length drives reading rate estimates for HP1 pas-
sages more than word length (b = 8.72 vs. �1.85), word length
drives reading rate estimates for DIBELS passages more than sen-
tence length (b = �9.77 vs. 3.84). Thus, we observed that the cor-
relation between TTS-based estimates and FK scores is negative
in DIBELS passages (r = �0.37) because the dominant feature
that characterizes them—average word length—makes passages
more complex and slower to read per word when it increases. In
contrast, this correlation for HP1 passages is positive (r = 0.57),
because the dominant feature that characterizes them—average
sentence length—makes passages more complex but faster to read
per word when it increases.

Why Are the Results for HP1 and DIBELS Passages
Different? Why is the feature that drives estimated reading
rates different between the two sets of passages? Average word
length drives the reading rates of DIBELS passages because word
length is a stronger structural feature of DIBELS passages than of

9 The relationship between the number of syllables and the word
duration is not completely linear.

10 Eighth edition: https://dibels.uoregon.edu/assessment/index/material.
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HP1 passages. First, we observe that average word and sentence
length are more strongly related in DIBELS passages (r = 0.43)
than they are in HP1 passages (r = 0.11). That is, in DIBELS, lon-
ger sentences tend to be made of longer words, whereas in HP1,
words with different lengths are roughly evenly distributed across
sentences of different lengths. Second, average word length is also
more strongly correlated with TextEvaluator scores in DIBELS
passages (r = 0.68) than they are in HP1 passages (r = 0.16). This
suggests that average word length characterizes the difficulty of
DIBELS passages to a greater extent than it does for HP1
passages.
On the other hand, average sentence length drives the reading

rates of HP1 passages because the control we imposed on the total
word count of HP1 passages to manage the length of a reader’s
turn11 expanded the scope of prosodic effects captured by sentence
length. When the word count of a passage is controlled, the num-
ber of sentences in the passage largely determines sentence length:
When word count is constant, fewer sentences would typically
imply longer sentences. Fewer sentences would elicit fewer sen-
tence-final lengthenings and pauses per passage, resulting in faster
per-word reading rate, all else being equal. Because fewer senten-
ces imply longer sentences, prosodic effects from sentence count
can also be captured by sentence length.
Thus, of the two features we consider here, the feature that dom-

inates the production effects on reading rates for HP1 passages is
average sentence length, which also happens to be the feature
whose text-complexity-related and production-related effects are
not aligned with predictions of the overall text complexity effect:
longer sentences are more complex but they are faster to read per
word due to their prosodic constraints (see Table 6). Because aver-
age word and sentence length have opposite production-related
effects on the reading rate of these passages, using a text complex-
ity measure that combines these two features additively (as done
explicitly in the FK formula) would reveal no marginal text com-
plexity effect on ORF. In fact, replacing TextEvaluator with FK as
our metric of text complexity in the mixed-effects models reported
earlier produced the same conclusions.
We also arrive at the same conclusions when replacing the over-

all TextEvaluator score in our models with its eight component
dimensions. Of TextEvaluator’s eight dimensions, passages’ word
unfamiliarity and syntactic complexity were the only significant
predictors of WCPM. Passages higher in word unfamiliarity—
which is correlated with average word length (r = 0.23)—are pre-
dicted to be read slower, whereas passages higher in syntactic
complexity—which is correlated with average sentence length (r =
0.94)—are predicted to be read faster. Importantly, the effect of
syntactic complexity is fully captured by TTS estimates when TTS

estimates are entered into the model. This model with TTS esti-
mates and TextEvaluator’s eight dimensions explains 42% of text-
based WCPM variability, which is similar to the 40% explained
by our planned model that has TTS estimates and the overall
TextEvaluator scores (Model 4; Table 5). These results provide
further evidence that we failed to observe a marginal text com-
plexity effect in the HP1 passages because the dimensions that
predict WCPM for these passages—word unfamiliarity and syn-
tactic complexity—have opposite text-complexity-related and pro-
duction-related effects.

Summary. Marginal effects of text complexity metrics on ORF
have been interpreted to exclusively indicate how text complexity
affects ORF. However, our results suggest that previously observed
marginal text complexity effects likely reflect a composite of text-com-
plexity-related and production-related effects because these metrics are
built from components that can have simultaneous effects on both text
complexity and production.

Consequently, when a marginal text complexity effect is
observed without controlling for prosodic constraints, it could be
attributable to readers needing longer time to process complex
texts (i.e., the traditional, intuitive explanation); or that more com-
plex passages happened to be constructed in a way that makes
them longer to utter, independent of the passages’ text complexity;
or both, where one of them could be driving the effect more than
the other. On the other hand, when a text complexity effect is not
observed (as in the current study), it could ostensibly suggest that
text complexity has no effect on ORF. Our study showed that text
complexity effects could still be present, but to reveal them, pro-
duction constraints imposed by the passages may have to be
accounted for.

Discussion

Using data collected through an app that involves interactive
oral reading, we estimated and identified sources of text-based var-
iability in children’s ORF when reading passages from a novel.
We found the following answers to our research questions:

1. Using linear mixed-effects models, we found a small but
appreciable amount of text-based variability (9%) in
ORF.

Table 6
Standardized Regression Coefficients in Predicting TTS-Based Estimates for Harry Potter and DIBELS Passages

Predictor

Harry Potter (N = 346)
r2 = 0.44

DIBELS (N = 160)
r2 = 0.62

b SE t p b SE t p

Average word length �1.85 0.54 �3.46 .001 �9.77 0.60 �16.30 ,.001
Average sentence length 8.72 0.54 16.27 ,.001 3.84 0.60 6.40 ,.001

Note. TTS = text-to-speech synthesis; DIBELS = Dynamic Indicators of Basic Early Literacy Skills.

11Word count was only approximately controlled because we respected
paragraph boundaries when segmenting the text into turns, so we would
occasionally have turns with long paragraphs, where the number of words
is substantially beyond the average for a turn. See the Materials: Reading
App section.
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2. Contrary to what is typically expected, we found that a
comprehensive text complexity metric did not explain
text-based ORF variability on its own.

3. In contrast, production-related effects—which we opera-
tionalized here as the timing and prosodic factors cap-
tured by reading rate estimates from an automated TTS
system—explained text-based ORF variability on their
own (Model 3: 21% of 9% � 1.8%)

4. Only after controlling for production-related effects do
we see a significant effect of text complexity on ORF.
The model that has both TextEvaluator scores and TTS-
based estimates in the model explained about half of the
text-based variability in our data (Model 4: 40% of 9% �
3.6%).

We also tested the robustness of these findings by fitting a fol-
low-up model that accounted for various student characteristics.
We found that production-related effects still predicted ORF and
that the magnitude of these effects might differ across groups of
students. These findings indicate that production-related effects
are an independent and robust source of text-based ORF
variability.
The robustness of production-related effects in ORF should not

be surprising. Before processing effects from text complexity and
related features can even affect ORF, the makeup of texts already
imposes constraints on how fast they can be fluently read from the
outset. These constraints are widely recognized in the speech pro-
duction and phonetic literatures, which treat oral reading as a type
of utterance that is subject to the same production constraints as
other types of utterances (Hirschberg, 2002; White, 2014). For
example, passages with more clauses and sentences would gener-
ally prompt more prosodic pauses in fluent oral reading because
the presence of more clausal boundaries would license more
“valid” pausing locations in the passage. In turn, these boundaries
already contribute to how the passage is expected to be read aloud.
Processing difficulty and comprehension demands would then
interact with these production constraints to result in the oral read-
ing rate that we ultimately observe for a passage.
What was surprising, however, was that production-related

effects seem stronger for students who understood the story better.
This result can be supported by accounts of discourse processing
(e.g., Gernsbacher, 1997; Zacks & Swallow, 2007; Zwaan et al.,
1995) which predict that greater understanding of the text reinfor-
ces the reader’s discourse model and facilitates oral reading for the
text. Given that the students who understood the story more also
seemed to be more skilled readers, this result is also consistent
with evidence of developmental differences in the use of prosody
when reading aloud, where more skilled developing readers have
exhibited prosody that is more similar to expert/proficient readers’
than their less skilled peers (e.g., Ardoin et al., 2013; Kim & Wag-
ner, 2015; Miller & Schwanenflugel, 2006). However, we note
that our measure of comprehension—accuracy on fact-based ques-
tions about the HP1 passages—tapped shallower levels of process-
ing (i.e., mostly at the “textbase” level, with some elements of the
“situation-model” level, in the multilevel framework of discourse
comprehension in Graesser et al., 2011). Thus, although we have
some idea about the students’ comprehension, we are uncertain

about how well they actually understood the larger context of the
novel. Because our results are preliminary, the link between pro-
duction-related effects and reading comprehension can be clarified
by using measures that tap into deeper levels of comprehension
and discourse processing. Clarifying the nature of this link is im-
portant because it has implications for measuring the ORF of stu-
dents who differ in comprehension skills using texts with different
production constraints.

Another surprising finding is that the amount of text-based ORF
variability we observed in HP1 passages was similar to what has
been observed in standardized test passages (1–10%; Barth et al.,
2014; Christ & Ardoin, 2009; Kim et al., 2010; Poncy et al.,
2005). To our knowledge, the range of text-based ORF variability
in novels like HP1 is yet to be estimated in the literature. Despite
this, an expected limitation of using such texts to study ORF is
that they would introduce more variability to students’ oral reading
than standardized test passages and other controlled texts. This ex-
pectation did not hold for HP1 in this study, but additional studies
on HP1 and other fiction books and novels would more clearly
reveal the range of text-based variability we could expect from
such texts. These studies would also confirm whether concerns
about fiction books and novels introducing more text-based ORF
variability than standardized test passages are warranted.

The difference we observed from standardized test passages,
however, is in how text features explained ORF variability.
Whereas overall text complexity metrics tend to explain ORF vari-
ability on their own in standardized test passages (Ardoin et al.,
2005; Barth et al., 2014; Compton et al., 2004; Francis et al.,
2008), we found that there was no marginal text complexity effect
for HP1 passages and that the effect of text complexity was only
revealed when production-related effects were included in the
model. We attributed this finding to text complexity metrics con-
sisting of features that have both complexity-related and produc-
tion-related effects on oral reading. We demonstrated that a
sample of standardized test passages are structured so that features
that drive their complexity also make them slower to read, whereas
our passages from HP1 were structured so that the features that
drive their complexity make them faster to read. Although these
results were exploratory and warrant confirming in future work,
these findings highlight how texts that exhibit wide variation in
their features can offer important insight about text-related effects
in ORF.

Theoretical, Educational, and Clinical Implications

The effects of text features on ORF are explained by current
theories primarily in terms of processing difficulty or comprehen-
sion demands. For example, in Zacks et al. (2009), where event
segmentation theory is applied to the oral reading of narrative
texts, they claimed that passages containing more event boundaries
are expected to be read more slowly because those boundaries
mark where situational features (e.g., characters, objects, goals)
change and the discourse model is updated. However, we propose
that the text making up these event boundaries and situational fea-
tures have production constraints whose effects on ORF are inde-
pendent of discourse processing. In fact, in the same Zacks et al.
(2009) study, the passages with more event boundaries and
changes in situational features also tended to have more syllables
and longer clause durations (see their Table 4). Thus, the resulting
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reading times for these passages may have been attributable to
both the production constraints from syllable count and clause du-
ration and the discourse effects due to changes in the situational
features. Interestingly, when Zacks et al. (2009) included both syl-
lable count and situational features in their analysis, they found
that the effect of situational features flipped signs (see their foot-
note 1), indicating a similar suppression effect to what we
observed in the current study for text complexity. Whereas they
interpreted this suppression effect as an artifact and decided to
remove syllable count from their models, we argue that this is evi-
dence for the need to account for production-related effects when
developing models of ORF. To estimate the comprehension-
related effects of text features (e.g., text complexity, effects dis-
course processing effects) independent of their production-related
effects and vice versa, both effects would need to be accounted for
when predicting ORF.
This theoretical implication has downstream educational and

clinical implications. Interpreting differences in ORF between stu-
dents may not be straightforward even when the texts they read
are comparable in features like text complexity. When production-
related effects are unaccounted for, differences in WCPM may not
directly reflect differences in ORF because there are differences in
the production constraints of the texts that students happened to
read (see also Francis et al., 2008). Moreover, because the strength
of production-related effects could vary across readers, this conse-
quence can have disproportionate effects on different groups of
students. For example, this consequence would disproportionately
impact students with clinical or subclinical speech motor deficits
because their oral reading is especially susceptible to texts’ pro-
duction constraints, and these constraints (e.g., number of sylla-
bles, intonation types) can affect clinical groups differently (see,
e.g., Kuo & Tjaden, 2016; Patel et al., 2013).
How can production-related effects be accounted for? It would

not be practical to create texts that are comparable in their produc-
tion constraints because there are many such constraints and they
interact in complex ways (Hirschberg, 2002; White, 2014). We
propose that an alternative is to include reading rate estimates
from TTS as a covariate when analyzing differences in ORF. In
doing so, differences in ORF would reflect differences beyond the
expected reading rates for the passages due to their production
constraints.
This alternative is important when measuring the ORF of read-

ers with subclinical/clinical speech motor deficits and comparing
them against typically developing readers. When comparing sub-
clinical/clinical samples against typical control samples in experi-
ments or intervention studies, it is common to match the samples
in age and ability to ensure that the effect of a manipulation or
intervention is not modulated by preexisting differences between
the groups. Matching the texts on their expected reading rates
across the groups achieves a similar effect, but this process could
be as challenging as creating texts that are comparable in produc-
tion constraints. Entering TTS reading rate estimates as a covariate
would serve as a simpler alternative, where the differences
between the groups are statistically adjusted for the production
constraints in the texts they read. This adjustment would help
ensure that the ORF differences between the groups are evaluated
independent of the samples’ age, ability, and texts read.

Limitations

Our main goal for this study was to test the importance of pro-
duction-related effects as a source of text-based ORF variability,
but we fully acknowledge that there are other important factors
that contribute to text-based ORF variability that we did not
account for, such as text features related to discourse processing
and reading comprehension. For example, students read different
HP1 passages aloud and these passages may have differed in the
type and amount of discourse features they had. The presence of
more events, conversations, plot transitions, and animated charac-
ters in a passage is expected to affect oral reading because these
features all affect how the reader’s discourse model develops and
the state of a reader’s discourse model affects how quickly infor-
mation is integrated during reading (Gernsbacher, 1997; Zacks et
al., 2009). Given that production-related effects appear to explain
a substantial amount of text-based ORF variability on their own
(20%), a potential concern about not accounting for discourse
processing features is that their effects are conflated with produc-
tion-related effects.

We note that this conflating is unlikely because production con-
straints come from fundamental properties of speech, which are in
essence unrelated to the meaning of the texts and to the role of par-
ticular passages in the bigger narrative. This independence is also
reflected in how we operationalized production constraints in this
study: As we described, the timing model in the TTS system we
used only considers local prosodic effects (segment quality, lexical
stress, prosodic phrasing, emphasis based on syntactic structure,
pauses between sentences). Thus, the reading rate estimates we
obtained from TTS are independent of discourse-related effects. In
fact, because modern TTS systems only account for local effects,
TTS researchers have tried to modify TTS systems for storytelling
contexts to generate digital speech that accounts for emotions,
characters, and other discourse-related features (Delmonte & Tri-
podi, 2015; Doukhan et al., 2011; Ramli et al., 2016; Theune et
al., 2006). Nevertheless, investigating discourse-related features as
a source of text-based ORF variability in fiction books like HP1 is
a fruitful direction for future work. In addition to estimating how
much variability these features account for in fiction books, it
would be important to examine how production-related features
interact with discourse processing-/comprehension-related features
to affect the ORF observed for a passage.

Another goal for this study was to analyze text-based ORF vari-
ability from the casual reading of a popular fiction book for an
extended period of time. Although analyzing text-based ORF vari-
ability in this ecologically relevant context is a novel aspect of this
study, this context introduced some methodological challenges.

First, because we were interested in students’ natural reading
behavior, we did not control how students approached the task
beyond instructing them to read aloud as they normally would.
Consequently, students exhibited an array of on- and off-task
behaviors, which led to the exclusion of some participants and
many turns (see Appendix A). Although the excluded turns and
students were largely similar to those retained for analysis (Tables
A1 and A2), we acknowledge that the excluded students’ mean ac-
curacy for the HP1 comprehension questions was only 50%, which
is substantially lower than the accuracy of the retained students
(73%). A potential concern for this exclusion is that we excluded
poor readers and only retained highly skilled readers. We note that
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it is possible for the excluded students to have been poor readers,
but given that these students were excluded because all of their
turns were unlikely to constitute bona fide oral reading, it is also
possible that these students were simply not motivated to do the
task.
Unfortunately, we cannot distinguish whether students were

excluded based on one or both of these reasons. However, we do
not think that we only retained highly skilled readers given the vari-
ability in their ORF and reading comprehension (see Table 1) and
how they compare to national norms (Hasbrouck & Tindal, 2017).
Second, because our study was done outside a formal instruc-

tional setting, we were limited in the student characteristics we
could obtain: We do not have information about whether students
have known speech or language impairments. Because we antici-
pate that student characteristics, especially speech motor and lan-
guage clinical diagnoses, would modulate production-related
effects, it would be important to conduct similar studies in a set-
ting where such information can be collected and analyzed. In
sum, to overcome these methodological challenges, future work in
a similar naturalistic study context would benefit from situating
the reading sessions in a more structured and instructional setting
(e.g., in a school’s reading curriculum), where a wider range of
student characteristics can be examined.

Conclusions

A principal challenge in assessing readers’ ORF is accounting
for systematic sources of its variability. The characteristics of pas-
sages given to readers are considered one such source, and in par-
ticular, text complexity has enjoyed the role of being the most
prominent of these characteristics. However, as text complexity
only captures some text-based variability, we considered other
characteristics to account for more of this variability.
Using oral reading data from upper elementary school children

reading passages from a popular novel, we found that articulatory
and prosodic constraints related to the oral production of texts
should be considered alongside text complexity as another text
characteristic to account for when measuring ORF. These produc-
tion-related features, which we operationalized by using timing
models built into TTS systems, explained a substantial amount of
text-based ORF variability in the current study (20%). The funda-
mental role of production-related features in constraining timing
patterns has been widely acknowledged in the speech production
literature (Hirschberg, 2002; White, 2014), but until the current
study these features had yet to receive attention in the ORF litera-
ture as constraining reading rate–—and therefore as producing
systematic text-based ORF variability—–independently of text
complexity and other factors related to text processing. This find-
ing advances our understanding of factors that could impact ORF
measurement. We also note that TTS-based estimates can be read-
ily obtained from current computer operating systems, making it
easy for other researchers to expand on our findings.
The current study also illustrates that passages could be read

slowly not necessarily or not only because they have higher text
complexity but also because they happen to be structured so that they
are slower to utter per word regardless of how complex they are. Pre-
vious work on ORF has focused on standardized test passages such
as DIBELS, where passages with higher text complexity happened
to have characteristics that make them slower to read per word.

Results on these passages have been consistent with the expected
text complexity effect (e.g., Ardoin et al., 2005; Barth et al., 2014;
Francis et al., 2008). In contrast, for a set of passages from a novel
(HP1) that were controlled for word count, passages with higher text
complexity tended to be those that were faster to utter per word, and
we suggested that the structure of these passages makes these two
factors counteract each other, which may be why we did not observe
a marginal text complexity effect on ORF for these passages.

Our results suggest that it is important to consider including a
wider range of reading materials beyond standardized test pas-
sages when studying the effects of text features on ORF because
texts created for different purposes could systematically differ in
their structure. In turn, these differences in structure could system-
atically affect their oral reading. Using a variety of reading materi-
als would cover a wider range of possible variations in text
features, thereby allowing a more comprehensive investigation
into text-based ORF variability.
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Appendix A

Data Preprocessing Procedure

The original dataset consisted of 2,682 reading turns that
were collected from 71 students (33 females [46%]; no gender
information for one student; Mage = 9.35; SD = 1.17; no age in-
formation for seven students) across the two data collections.
This dataset contained 606 different passages across the book
because each student proceeded at their own pace, and students
did not always read the same passages from the book.

However, only a subset of this dataset is eligible for analy-
sis because measuring ORF in natural educational settings—
where young children read on their own with minimal
researcher involvement—introduces a variety of issues that all
interact to challenge how well ORF could be measured. Some
of the previously identified issues include students not attempt-
ing to read during their turn (Beigman Klebanov et al., 2019),
recordings with almost no audible speech due to high back-
ground noise, silent reading, or a student being distracted by
other activities while their speech is being recorded (Loukina
et al., 2019). To make valid inferences about text-based vari-
ability in children’s ORF based on WCPM, the WCPM mea-
sure to be analyzed should reasonably reflect how children read
the passages in the book out loud. This requires that the data to
be analyzed are those reading turns in which students were
actually reading the passages they were assigned.

To determine the subset of the data that meet these criteria,
the whole dataset was preprocessed using the following proce-
dure. First, following Beigman Klebanov et al. (2019), we
identified reasonable turn durations for the passages given the
number of words in each passage, the expected reading rates
for the students based on ORF norms (Hasbrouck & Tindal,
2017), and an estimate of within-person variation in reading
rates across passages. Reading turns that were shorter (longer)
than the estimated minimum (maximum) of these durations
(translating to reading rates of 50 WCPM and 219 WCPM)
were excluded, because these turns were likely too short to

contain complete reading data for the passage or too long as to
contain substantial nonreading time (e.g., daydreaming, getting
distracted). We excluded 1,406 (52%) such turns, and 1,052 of
these turns were shorter than ten seconds, indicating that stu-
dents did not really attempt to read during most of these
excluded turns.

Second, we also screened the reading turns for accuracy
because reasonable turn durations by themselves are not
enough to capture whether students were actually reading the
passage aloud with sufficient audio quality to allow for tran-
scriptions. Reading turns where the student read fewer than
70% of the words in the passage accurately were excluded.
Hasbrouck and Tindal (2017) note that reading accuracy below
90% for grade-level texts suggests frustration from having dif-
ficulty in reading or that the text is beyond the instructional
level for a reader. Given this standard, we consider our crite-
rion to be reasonably tolerant, allowing for more flexibility in
accuracy due to poor reading skill, frustration levels, and other
sources of difficulty from reading a different type of text. We
excluded 238 more turns with this criterion.

Finally, we excluded turns that were interrupted by task-
unrelated speech while the student is reading a passage (e.g.,
when a student talks to an instructor or another student in the
middle of their turn). We excluded 74 more turns with this
criterion.

Figure A1 breaks down the membership of the excluded
turns in terms of the three preprocessing criteria because many
excluded turns satisfy more than one exclusion criterion.
Because a substantial amount of data had been excluded, we
verified that the exclusion did not introduce selection bias to-
ward specific groups of students or turns: retained students and
turns were generally similar to excluded students and turns (see
Tables A1 and A2).
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Figure A1
Venn Diagram Breaking Down the Membership of Excluded and Valid Turns
Based on the Preprocessing Criteria

Note. The colored circles show turns that were excluded based on one or more of the three
criteria. The turns not in the circles were the turns selected for analysis. See the online arti-
cle for the color version of this figure.

Table A1
Characteristics of Retained and Excluded Students

Measure
Retained students

(N = 56)
Excluded students

(N = 15) Difference

Proportion female 0.46 0.47 0.01
Proportion English L1 at home 0.82 0.73 0.09
Proportion familiar with HP1 0.36 0.47 0.11
Mean age 9.61 9.09 0.52
Mean HP1 comprehension accuracy 0.73 0.50 0.23

Note. HP1 = Harry Potter and the Sorcerer’s Stone.

(Appendices continue)
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Appendix B

Follow-Up Analysis Results

Because many students had missing values for the student-
level variables, adding these variables in the follow-up model
while ensuring that these models are comparable with the
planned models was an issue. To address this missingness issue
and retain all observations from the planned models in the fol-
low-up model, we built the missingness of these variables into
the model specification, which is one way of accounting for
missingness in data. We added missingness indicator varia-
bles that marked students for whom student-level variables
were missing. The addition of these variables allowed the
direct comparison of the follow-up model to the planned mod-
els because all models were fit to the exact same dataset.

Table B1 reports the follow-up model to Model 4 that
accounted for various student-level variables and interactions
to explore whether production-related effects were driven by
specific students (Model 5).

In fitting Model 5, the predictors were reparameterized as
follows: TextEvaluator scores and TTS estimates were z-score
transformed across passages as in Model 4. Students’ age and
HP1 comprehension accuracy (in percent, from 0% to 100%)
were mean-centered across students, whereas the number of
valid turns they made was centered around the median. Lastly,
the within-session turn index was shifted so that 0 meant the
first turn a student made within a session.

Table A2
Passage Characteristics of Retained and Excluded Turns

Measure
Retained turns
(N = 964)

Excluded turns
(N = 1718) Difference

TextEvaluator 571.78 (178.47) 571.16 (184.47) 0.62
Flesch-Kincaid 5.31 (2.31) 5.39 (2.50) 0.08
TTS 156.12 (13.20) 155.72 (13.78) 0.40
Academic vocabulary 25.39 (7.70) 25.13 (8.57) 0.26
Concreteness 60.73 (8.80) 60.33 (9.54) 0.41
Degree of narrativity 82.07 (6.82) 81.70 (7.90) 0.37
Interactive/conversational style 73.16 (14.76) 71.00 (17.54) 2.16
Level of argumentation 49.23 (23.04) 47.13 (23.55) 2.09
Lexical cohesion 44.75 (7.52) 44.93 (7.81) 0.19
Syntactic complexity 47.12 (14.12) 46.80 (15.03) 0.31
Word unfamiliarity 53.27 (10.42) 54.64 (11.15) 1.37

Note. TTS = text-to-speech synthesis. Standard deviations in parentheses. TextEvaluator component dimension scores are scaled from 1 to 100, with
higher numbers indicating higher levels of the dimension.
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Table B1
Follow-Up Model Accounting for Potential Confounds (Model 5)

Fixed effect b t

Intercept 91.88 5.85***
Data collectiona �2.40 �0.19
Focal measures
TextEvaluator �3.22 �2.51***
TTS 5.46 4.78***

Student characteristics
Female 0.41 0.06
Age 4.35 1.31
nturns 0.37 1.76
HP1 Comprehension Accuracy 0.53 2.82**
HP1 Familiarityb �0.96 �0.12
The Harry Potter book was boring.c

Disagree �3.59 �0.34
Agree 9.97 0.96
Strongly agree �1.97 �0.15

Session variables
Within-session Turn Index 0.40 0.58

Interactions
TextEvaluator 3 Age 1.50 1.36
TextEvaluator 3 HP Comprehension Accuracy �0.08 �1.45
TextEvaluator 3 HP1 Familiarity �0.33 �0.16
TTS 3 Age �0.28 �0.27
TTS 3 HP1 Comprehension Accuracy 0.11 2.08***
TTS 3 HP1 Familiarity 1.01 0.53
Data Collection 3 Turn Index �0.38 �0.52

Missing indicator variablesd

Age 1.41 0.14
HP1 Familiarity 0.70 0.06
The Harry Potter book was boring. (missing) 9.05 0.63

Random effect SD r

Site
Intercept 0.00

Student
Intercept 21.79 1
TextEvaluator 3.60 0.16 1
TTS 2.74 0.26 �0.78 1

Passage
Intercept 6.96

Residual 15.72

Note. TTS = text-to-speech synthesis; HP1 = Harry Potter and the Sorcerer’s Stone.
a Reference category is Data Collection A. b Reference category is Unfamiliar. c Reference category is
Strongly disagree. d Reference category is Not missing.
** p # .01. *** p # .001.
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